Les réseaux Ethernet

Les réseaux Ethernet

Les premiers réseaux Ethernet ont été développés au tout début des années 80 par le triumvirat DEC, Intel et Xerox puis par une grande partie des constructeurs informatiques. Aujourd’hui, le monde Ethernet représente 95 p. 100 des connexions terminales dans le monde, et tous les postes de travail des entreprises sont connectés par des cartes Ethernet, à l’exception encore de quelques connexions sur le Token-Ring, le réseau local initié par IBM. La grande révolution du monde Ethernet a été de passer en mode commuté et non plus partagé, comme nous allons le voir.Ethernet fonctionne selon deux modes très différents mais totalement compatibles, le mode partagé et le mode commuté, qui permettent tous deux de transporter des trames Ethernet. Nous avons déjà introduit ces dernières au chapitre 6 à l’occasion de la descrip- tion des protocoles de niveau trame.Le mode partagé indique que le support physique est partagé entre les terminaux munis de cartes Ethernet. Dans ce mode, deux stations qui émettraient en même temps verraient leurs signaux entrer en collision. Dans le mode commuté, les terminaux sont connectés à un commutateur, et il ne peut y avoir de collision puisque le terminal est seul sur la liaison connectée au commutateur. Le commutateur émet vers la station sur la même liaison mais en full-duplex, c’est-à-dire en parallèle mais dans l’autre sens.

Les réseaux Ethernet partagés

Née de recherches effectuées au début des années 70 sur les techniques d’accès aléatoire, la norme IEEE 802.3, qui a donné ensuite naissance à la norme ISO 8802.3, décrit la technique d’accès à un réseau local Ethernet partagé. C’est la société Xerox qui en a développé la première les prototypes.La norme IEEE 802.12 définit le réseau local 100VG AnyLAN, qui est compatible avec Ethernet. La compatibilité correspond à l’utilisation d’une même structure de trame que dans Ethernet. La technique d’accès, en revanche, n’est pas compatible avec le CSMA/CD, comme nous le verrons à la fin de ce chapitre.On peut réaliser divers types de réseaux capillaires à partir du système de câblage. Le choix de la qualité du câble est important en cas de contrainte de distance. Il vaut mieux limiter la distance entre le local technique et la périphérie à une cinquantaine de mètres. La recommandation américaine de l’ANSI propose une limitation à 295 pieds (environ 90 m).La topologie d’un réseau Ethernet comprend des brins de 500 m au maximum, inter- connectés les uns aux autres par des répéteurs. Ces répéteurs sont des éléments actifs qui récupèrent un signal et le retransmettent après régénération. Les raccordements des matériels informatiques peuvent s’effectuer tous les 2,5 m, ce qui permet jusqu’à 200 connexions par brin. Dans de nombreux produits, les spécifications indiquent que le signal ne doit jamais traverser plus de deux répéteurs et qu’un seul peut être éloi- gné. La régénération du signal s’effectue une fois franchie une ligne d’une portée de 1 000 m. La longueur maximale est de 2,5 km, correspondant à trois brins de 500 m etun répéteur éloigné (voir figure 16.3). Cette limitation de la distance à 2,5 km n’est cependant pas une caractéristique de la norme. Nous verrons un peu plus loin que l’on peut s’affranchir de ces contraintes de trois répéteurs et atteindre une distance totale de l’ordre de 5 km.

La seule contrainte à prendre en compte est le temps maximal qui s’écoule entre l’émis- sion et la réception du signal dans le coupleur le plus éloigné. Ce temps ne doit pas excé- der une valeur de 25,6 µs. En effet, lors d’une collision, le temps avant réémission est un multiple de 51,2 µs. Pour éviter une nouvelle collision entre deux trames réémises sur des tranches de temps différentes, il doit s’écouler au maximum 51,2 µs entre le moment de l’émission et celui de l’écoute de la collision. Le temps aller est au maximum de 25,6 µs, si la collision s’effectue juste avant l’arrivée du signal distant. Il faut également 25,6 µs pour remonter la collision jusqu’à la station initiale (voir figure 16.4). De plus, la longueur d’une trame doit être au minimum égale au temps aller-retour de façon que l’émetteur puisse enregistrer une collision. Cette longueur minimale est de 64 octets. On retrouve bien 51,2 µs de temps minimal de propagation en remarquant que 64 octets équivalent à 512 bits, qui, à la vitesse de 10 Mbit/s, requièrent un temps d’émission de 51,2 µs.Tout réseau pour lequel le temps aller-retour est inférieur à 51,2 µs est susceptible d’utili- ser la norme IEEE 802.3. La vitesse de propagation sur un câble coaxial étant approxi- mativement de 200 000 km/s, la portée maximale sur un même câble est de 5 km envi- ron. Dans la topologie de base, une grande partie du temps de propagation est perdue dans les répéteurs. Pour atteindre des distances supérieures à 4 km, certains câblages utilisent des étoiles optiques passives, qui permettent de diffuser le signal vers plusieurs brins Ethernet sans perte de temps. Dans ce cas, la déperdition d’énergie sur l’étoile opti- que pouvant atteindre plusieurs décibels, il n’est pas possible d’en émettre plus de deux ou trois en série. On obtient alors la topologie illustrée à la figure 16.5.

 

Cours gratuitTélécharger le document complet

Télécharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *