Contributions à l’étude d’espaces de fonctions et d’EDP dans une classe de domaines à frontière fractale auto-similaire

Contributions à l’étude d’espaces de fonctions et d’EDP dans une classe de domaines à frontière fractale auto-similaire

The Hausdorff dimension of Γ ∞

Recall that the open set condition is satisfied by the similitudes f 1 and f 2 if and only if there is a nonempty bounded open subset ω of R 2 such that f 1 (ω)∩ f 2 (ω) = ; and f 1 (ω)∪ f 2 (ω) ⊂ ω. In this case, the Hausdorff dimension of the invariant set Ξ is given by the single number d > 0 satisfying 2a d = 1 ( see §1.1.2, see also [Mor46, Kig01]). For a given θ ∈ (0,π/2), let (α,β) satisfy Assumption 1. For 0 < a ¶ a ⋆ , the open set condition is satisfied with ω = Ω because 2.2 The Geometry 65 ⋄ f 1 (Ω) ∩ f 2 (Ω) = ;, which stems from point (ii) in Assumption 1 if a < a ⋆ , and from Remark 2.2.2 if a = a ⋆ ; ⋄ by construction of Ω, we also have f 1 (Ω) ∪ f 2 (Ω) ⊂ Ω. Therefore, the Hausdorff dimension of the set Γ ∞ is d := dimH (Γ ∞) = −log2/ loga, If 0 < θ < π/2, then 0 < a ¶ a ⋆ < 1/ p 2 and d < 2. We have seen in paragraph 2.2.1.b that in the case when θ ∈ π 2N , the set Ξ is not countable. It is easy to compute its Hausdorff dimension in this case. Proposition 2.2.1 – If θ ∈ π 2N , then the Hausdorff dimension of Ξ is d/2. Proof. Take x ∈ R 2 . We have seen that Ξ = { fσ (x), σ ∈ 12m+1 (12|21) ∞}, where θ = π 2m . Therefore, Ξ = f 12m+1 ({ fσ (x), σ ∈ (12|21) ∞}). The set { fσ (x), σ ∈ (12|21) ∞} is exactly the invariant set of the contracting similitudes f 1 ◦ f 2 and f 2 ◦ f 1 , which also satisfy the open set condition with the domain Ω. Since their ratio is a 2 , we deduce that the Hausdorff dimension of Ξ is d/2. 

The self-similar measure µ

To define traces on Γ ∞, we recall the classical result on self-similar measures, see [Fal97, Hut81] and [Kig01] page 26: Theorem 2.2.4 – There exists a unique Borel regular probability measure µ on Γ ∞ such that for any Borel set A⊂ Γ ∞, µ(A) = 1 2 µ € f −1 1 (A) Š + 1 2 µ € f −1 2 (A) Š . (2.31) The measure µ is called the self-similar measure associated to the self-similar triplet (Γ ∞, f 1 , f 2 ). Proposition 2.2.2 – The measure µ is a d-measure on Γ ∞, with d = −log2/ loga: there exists two positive constants c1 and c2 such that c1 r d ¶ µ(B(x,r)) ¶ c2 r d , for any r 0 < r < 1 and x ∈ Γ ∞, where B(x,r) is the Euclidean ball in Γ ∞ centered at x and with radius r. In other words the closed set Γ ∞ is a d-set (see §1.2.6.a and [JW84]). Proof. The proof stems from the Moran condition. It is due to Moran [Mor46] and has been extended by Kigami ( see [Kig01], Proposition 1.5.8 and Theorem 1.5.7). We define L p µ , p ∈ [1,+∞) as the space of the measurable functions v on Γ ∞ such that R Γ ∞ |v| p dµ < ∞, endowed with the norm kvkL p µ = €R Γ ∞ |v| p dµ Š1/ p . We also introduce L ∞ µ , the space of essentially bounded functions with respect to the measure µ. A Hilbertian basis of L 2 µ can be constructed with e.g. Haar wavelets. 

Additional notations

We define the sets Γ σ = fσ (Γ 0 ) and Γ N = ∪σ∈AN Γ σ . The one-dimensional Lebesgue measure of Γ σ for σ ∈ AN and of Γ N are |Γ σ | = a N |Γ 0 | and |Γ N | = (2a) N |Γ 0 |. We will sometimes use the notation ® or ¦ to indicate that there may arise constants in the estimates, which are independent of the index n in Γ n , or of the index σ in Γ σ or Γ ∞,σ . We may also write A≃ B if A ® B and B ® A. 2.3 Trace results in the ramified domains Hereafter, we consider a ramified domain Ω constructed as in Section 2.2 with θ in (0,π/2), and we suppose that the parameters α,β satisfy Assumption 1. We first discuss very briefly the less interesting case when a < 1/2. If a < 1/2, then d < 1 and Γ ∞ is totally disconnected, see [Fal86], Lemma 4.1 p.54. This implies that f 1 (Γ ∞) ∩ f 2 (Γ ∞) = ;, see [Kig01], Theorem 1.6.2 page 33. The results of Jones[Jon81] and of Jonsson and Wallin [JW84] can be combined to prove that if p > max(1,2 − d), then the space of the traces on Γ ∞ of the functions v ∈ W 1, p (Ω) is B p, p 1− 2−d p (Γ ∞) ( see the introduction for the definition). We will see in Theorem 2.3.1 below that in this case, B p, p 1− 2−d p (Γ ∞) = JLip (1 − 2−d p , p, p;0;Γ ∞). Since the case a < 1/2 is understood, in the remaining part of the paper, we will take a such that 1/2 ¶ a ¶ a ⋆ , so the Hausdorff dimension d of Γ ∞ is not smaller than 1. We recall the construction of the trace operator made in [AT07] ( see also §1.3.3) by taking advantage of the self-simililarity; this trace operator, called ℓ ∞ below, is well defined even if a = a ⋆ . We first construct a sequence (ℓ n )n of approximations of the trace operator: consider the sequence of linear operators ℓ n : W 1, p (Ω) → L p µ , ℓ n (v) = X σ∈An ‚ 1 |Γ σ | Z Γ σ v d xŒ fσ (Γ ∞) , (2.32) where |Γ σ | is the one-dimensional Lebesgue measure of Γ σ . Proposition 2.3.1 – The sequence (ℓ n )n converges in L (W 1, p (Ω),L p µ ) to an operator that we call ℓ ∞. Proof. See [AT07]. Remark 2.3.1 – For a given θ, 0 < θ < π/2, let (α,β) satisfy Assumption 1 and Ω be constructed as in § 2.2.2.a, with 1/2 ¶ a ¶ a ⋆ ; in Chapter 4, we prove that Ω is a 2-set as defined in e.g. [JW84] page 205, i.e. there exist three positive constants r0 , c1 and c2 such that for any closed ball B(P,r), P ∈ Ω, 0 < r ¶ r0 , c1 r 2 ¶ m2 (B(P,r) ∩ Ω) ¶ c2 r 2 , where m2 is the Lebesgue measure in R 2 . Since Ω is a 2-set, there is a classical definition of a trace operator on ∂ Ω, see for instance [JW84] page 206. It is interesting to compare the operator ℓ ∞, whose construction is based on the self-similarity properties, with the latter classical trace operator. In Chapter 4, we prove that if p > 1, the two definitions of the trace of a function u ∈ W 1, p (Ω) coincide µ-almost everywhere. 

Trace results in the ramified domains 

Definition of JLip(t, p, p; 0;Γ ∞) for 0 < t < 1. The spaces JLip (t, p, p;0;K) on a self-similar set K were introduced in Definition 1.2.4. We recall here the definition of these spaces in the special case when K = Γ ∞. It was proved in [AT10] that this definition coincides with the original and more general one that was proposed in [Jon04]. Consider a real number t, 0 < t < 1. For any function f ∈ L p (Γ ∞), define |f | JLip(t, p, p;0;Γ ∞) by: |f | JLip(t, p, p;0;Γ ∞) =    X n¾0 2 n p t d 2 n( p 2 −1) X σ∈An |βσ | p    1 p , (2.33) where the numbers βσ , σ ∈ A are the coefficients of f in the Haar wavelet basis expansion given in (1.26). Definition 2.3.1 – A function f ∈ L p µ (Γ ∞) belongs to JLip (t, p, p;0;Γ ∞) if and only if the norm k f kJLip(t, p, p;0;Γ ∞) = |P0 f | + |f | JLip(t, p, p;0;Γ ∞) (2.34) is finite, where P0 f = R Γ ∞ f dµ. Recall that if the fractal set Γ ∞ is totally disconnected, then JLip(t, p, p;0;Γ ∞) coincides with the more classical function space: Theorem 2.3.1 – (Jonsson) If a < a ⋆ , then f 1 (Γ ∞) ∩ f 2 (Γ ∞) is empty and JLip (t, p, p;0;Γ ∞) = Lip(t, p, p;0;Γ ∞) = B p, p t (Γ ∞).

Characterization of the traces on Γ ∞ of the function in W 1, p (Ω)

Recall that the following theorem was proved in [AT10]. Theorem 2.3.2 – For a given θ, 0 < θ < π/2, let (α,β) satisfy Assumption 1 and Ω be constructed as in § 2.2.2.a, with 1/2 ¶ a ¶ a ⋆ ; then for all p, 1 < p < ∞, ℓ ∞ W 1, p (Ω)  = JLip (1 − 2−d p , p, p;0;Γ ∞). (2.35) First consequence A first consequence of Theorem 2.3.2 is that if 1/2 ¶ a < a ⋆ , then d ¾ 1 and from Theorem 2.3.1, ℓ ∞ W 1, p (Ω)  = Lip(1 − 2−d p , p, p;0;Γ ∞) = B p, p 1− 2−d p (Γ ∞), ∀p ∈ (1,+∞). (2.36) Remark 2.3.2 – Note that (2.36) has been proved in [AT08], without relying on the JLip spaces: indeed, when a < a ⋆ , Ω is an (ǫ,δ)-domain and Γ ∞ is a d-set; in this case, the extension result of Jones [Jon81] (from W 1, p (Ω) to W 1, p (R 2 )) and the trace result of Jonsson and Wallin [JW84] (from W 1, p (R 2 ) onto B p, p 1− 2−d p (Γ ∞)) can be combined to obtain (2.36).

Table des matières

I Introduction
1.1 Ensembles fractals auto-similaires et domaines ramifiés
1.1.1 Les ensembles fractals et leur dimension
1.1.2 Ensembles auto-similaires et domaines ramifiés
1.1.3 Une classe de domaines ramifiés du plan
1.2 Éléments d’analyse dans les domaines irréguliers
1.2.1 Le cas régulier
1.2.2 Le cas des domaines lipschitziens
1.2.3 Domaines (ǫ,δ) et propriété de prolongement Sobolev
1.2.4 Domaines de John et inégalités de Poincaré
1.2.5 Trace sur un sous-ensemble de Rn
1.2.6 Espaces de fonctions définies sur des fermés
1.3 Le cas des domaines ramifiés
1.3.1 Inégalité de Poincaré sur les domaines ramifiés
1.3.2 Prolongement et trace dans le cas sous-critique
1.3.3 Construction d’un opérateur de trace sur Γ∞
1.3.4 Caractérisation de l’espace de trace
1.4 Étude d’EDP dans des domaines à frontière fractale
1.4.1 EDP dans des des domaines ramifiés ou des arbres fractals
1.4.2 Problèmes de transmission à travers une interface fractale
1.5 Résumé de la thèse
1.5.1 Comparaison des espaces JLip et Besov
1.5.2 Propriété de prolongement Sobolev pour les domaines ramifiés
1.5.3 Comparaison des définitions de trace
1.5.4 Un problème aux limites dans Ω ∪ (R2\ Ω)
II Trace and extension theorems for a class of ramified domains with selfsimilar fractal boundary
2 JLip versus Sobolev spaces on a class of self-similar fractal foliages
2.1 Introduction
2.2 The Geometry
2.2.1 The similitudes f1and f2and the self-similar set Γ∞
2.2.2 Ramified domains
2.3 Trace results in the ramified domain
2.3.1 Definition of JLip (t, p, p;0;Γ∞) for 0 < t < 1
2.3.2 Characterization of the traces on Γ∞ of the function in W 1, p(Ω) 7
2.4 Embedding of the JLip spaces in Sobolev spaces for a = a⋆
2.4.1 Main results
2.4.2 Proof of Theorem 2.4.1
2.4.3 Proof of Theorem 2.4.2
2.5 Proofs of the geometrical lemmas
2.5.1 The case mθ > π/2
2.5.2 The case mθ = π/2
2.6 Another geometry
3 Sobolev extension property for tree-shaped domains with self-contacting fractal boundary
3.1 Introduction
3.2 The Geometry
3.3 Extension and trace results in W 1, p(Ω)
3.3.1 Extension result in the case a < a⋆
3.3.2 Characterization of the traces on Γ∞ of functions in W 1, p(Ω)
3.3.3 JLip versus Sobolev spaces on Γ∞
3.4 The main extension result
3.4.1 The extension theorem
3.4.2 A density result
3.5 Proof of the lifting theorem
3.5.1 Proof of point 1
3.5.2 Proof of point 2
3.6 Proof of the extension theorem
3.7 Proof of the geometrical results
3.7.1 Proof of the geometrical results from paragraph 3.5.1.b
3.7.2 Proof of the geometrical results from paragraph 3.5.2
4 Comparison of different definitions of traces for a class of ramified domains with self-similar fractal boundaries
4.1 Introduction .
4.2 The ramified domains
4.2.1 The self-similar set Γ ∞
4.2.2 The ramified domains
4.2.3 Ramified domains are two-sets
4.3 Different definitions of boundary traces
4.3.1 The classical definition of traces
4.3.2 A trace operator defined by self-similarity
4.4 Comparison of the two definitions of trace
4.4.1 Extension results for the ramified domains
4.4.2 Some results on the classically defined trace .
4.4.3 Self-similar strictly defined trace on Γ∞
4.4.4 Comparison of the different traces
III A numerical approach for a mixed transmission problem with a self-similar fractal interface
5 Une approche numérique d’un problème de transmission mixte avec une interface fractale auto-similaire
5.1 Introduction .
5.2 Le problème aux limites dans Ω ∪ Ωe
5.2.1 Le problème avec interface fractale
5.2.2 Le problème avec interface préfractale
5.3 Le problème extérieur homogène
5.3.1 Résolution du problème extérieur homogène
5.3.2 Discrétisation et résolution numérique du problème extérieur
5.4 Le problème intérieur
5.5 Résolution du problème aux limites dans Ωm ∪ Ωme
5.5.1 Un exemple dans le cas fe = 0
5.5.2 Le problème aux limites avec une source extérieure ponctuelle
5.6 Résolution auto-similaire du problème intérieur
5.6.1 Approximation de la solution dans Ωm
5.6.2 Application à la résolution numérique du problème intérieur
5.7 Annexe : calcul explicite des intégrales

projet fin d'etudeTélécharger le document complet

Télécharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *